Mathematical Symbol Table

Greek				Hebrew		Boldface		Sans Serif		'Blackboard' \mathbb{A}	$\begin{gathered} \text { Script } \\ \hline \mathcal{A} \end{gathered}$	Gothic		
Name		small	Capital	Name		a	A	a	A			\mathfrak{a}	\mathfrak{A}	
Alpha		α	A	Aleph	\aleph	b	B	b	B	\mathbb{B}	\mathcal{B}	\mathfrak{b}	\mathfrak{B}	
Beta		β	B	Beth	\beth	c	C	c	C	\mathbb{C}	\mathcal{C}	\mathfrak{c}	\mathfrak{C}	
Gamma		γ	Γ	Gimmel	I	d	D	d	D	D	\mathcal{D}	\mathfrak{d}	\mathfrak{D}	
Delta		δ	Δ	Daleth	7	e	E	e	E	\mathbb{E}	\mathcal{E}	\mathfrak{e}	\mathfrak{E}	
Epsilon		ϵ or ε	E			f	F	f	F	\mathbb{F}	\mathcal{F}	\mathfrak{f}	\mathfrak{F}	
Zeta		ζ	Z			g	G	g	G	\mathbb{G}	\mathcal{G}	\mathfrak{g}	\mathfrak{G}	
Eta		η	H			h	H	h	H	\mathbb{H}	\mathcal{H}	\mathfrak{h}	\mathfrak{H}	
Theta		θ or ϑ	Θ			i	I	i	I	II	\mathcal{I}	\mathfrak{i}	\mathfrak{I}	
Iota		ι	I			j	J	j	J	J	\mathcal{J}	j	\mathfrak{J}	
Kappa		κ	K			k	K	k	K	\mathbb{K}	\mathcal{K}	\mathfrak{k}	\mathfrak{K}	
Lambda		λ	Λ			1	L	I	L	\underline{L}	\mathcal{L}	\mathfrak{l}	\mathfrak{L}	
Mu		μ	M			m	M	m	M	M	\mathcal{M}	\mathfrak{m}	\mathfrak{M}	
Nu	u	ν	N	Nabla	∇	n	N	n	N	\mathbb{N}	\mathcal{N}	\mathfrak{n}	\mathfrak{N}	
	Xi	ξ	Ξ			p	P	p	P	\mathbb{P}	\mathcal{P}	\mathfrak{p}	\mathfrak{P}	
Omicron		o	O			q	Q	q	Q	Q	\mathcal{Q}	\mathfrak{q}	\mathfrak{Q}	
Pi		π or ϖ	Π			r	R	r	R	\mathbb{R}	\mathcal{R}	\mathfrak{r}	\mathfrak{R}	
Rho		ρ or ϱ	P			s	S	s	S	S	\mathcal{S}	\mathfrak{s}	\mathfrak{S}	
Sigma		σ or ς	Σ			t	T	t	T	\mathbb{T}	\mathcal{T}	\mathfrak{t}	\mathfrak{T}	
Tau		τ	T			u	U	u	U	\mathbb{U}	\mathcal{U}	\mathfrak{u}	\mathfrak{U}	
Upsilon		v	Υ			v	V	v	V	V	\mathcal{V}	\mathfrak{v}	\mathfrak{V}	
Ph		ϕ or φ	Φ			w	W	w	W	W	\mathcal{W}	\mathfrak{w}	\mathfrak{W}	
Ch		χ	X			x	X	x	X	\mathbb{X}	\mathcal{X}	\mathfrak{x}	\mathfrak{X}	
Ps		ψ	Ψ			y	Y	y	Y	Y	\mathcal{Y}	\mathfrak{y}	\mathfrak{Y}	
Omega		ω	Ω			z	Z	z	Z	\mathbb{Z}	\mathcal{Z}	\mathfrak{z}	3	
Logic						Functions								
$\forall x$	'for all $x \ldots$..'					$f: \mathbf{X} \longrightarrow \mathbf{Y}$				' f is a function from \mathbf{X} to \mathbf{Y} '				
$\exists x$	'there exists an x such that...' ,						$\mathbf{X} \ni x$	$\mapsto y$	\mathbf{Y}	' f is a function from \mathbf{X} to \mathbf{Y}				
\exists ! x						$f: \mathbf{X} \hookrightarrow \mathbf{Y}$				mapping element x to element y,				
$\nexists x$	'there does not exist any $x . .$.									$\mathbf{X} \subset \mathbf{Y}$, and f is the identity map,				
$A \Longrightarrow B$	'if A, then B ', or, ' A implies B '													
$A \Longleftarrow B$	'if B, then A ', or, ' B implies A '					$f: \mathbf{X} \mapsto \mathbf{Y}$				f is an injective function from \mathbf{X} to \mathbf{Y}				
$A \Longleftrightarrow B$	' A if and only if B ', or,' A is equivalent to B '					$f: \mathbf{X} \rightarrow \underset{\text { Id }}{\mathbf{Y}}$				f is a surjective function from \mathbf{X} to \mathbf{Y}				
TFAE	'The Following Are Equivalent...'					$f^{-1}\{y\}$				The constant unity: $\mathbb{1}(x)=1$ for all x. $\{x \in \mathbf{X} ; f(x)=y\}$; the fibre over y or preimage of y (where $f: \mathbf{X} \longrightarrow \mathbf{Y}$)				
$\downarrow \text { or }$	Q.E.D. - End of Proof.													

Set Theory

eory			
$\mathcal{A} \subset \mathcal{B}$	\mathcal{A} is a subset of \mathcal{B} ie. if $a \in \mathcal{A}$, then $a \in \mathcal{B}$ also.	$\mathcal{A} \subseteq \mathcal{B}$	\mathcal{A} is a subset of \mathcal{B}, and possibly $\mathcal{A}=\mathcal{B}$.
$\mathcal{A} \sqcup \mathcal{B}$	The disjoint union: $\mathcal{A} \sqcup \mathcal{B}=\mathcal{A} \cup \mathcal{B}$, with the assertion that $\mathcal{A} \cap \mathcal{B}=\emptyset$.	$\mathcal{A} \times \mathcal{B}$	The Cartesian product of \mathcal{A} and \mathcal{B} : $\mathcal{A} \times \mathcal{B}=\{(a, b) ; a \in \mathcal{A} \& b \in \mathcal{B}\}$
$\bigcup^{\infty} \mathcal{A}_{n}$	$\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3} \cup \ldots$	$\bigcap^{\infty} \mathcal{A}_{n}$	$\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \ldots$
$\bigsqcup \mathcal{A}_{n}$	$\mathcal{A}_{1} \sqcup \mathcal{A}_{2} \sqcup \mathcal{A}_{3} \sqcup$	$\prod^{\infty} \mathcal{A}_{n}$	$\mathcal{A}_{1} \times \mathcal{A}_{2} \times \mathcal{A}_{3} \times \ldots$
${ }^{n}{ }^{n} \boldsymbol{A} \backslash \mathcal{B}$	The difference of \mathcal{A} from \mathcal{B} : $\mathcal{A} \backslash \mathcal{B}=\{a \in \mathcal{A} ; a \notin \mathcal{B}\}$	${ }^{n}{ }^{n} \triangle 1 \triangle \mathcal{B}$	The symmetric difference: $\mathcal{A} \triangle \mathcal{B}=(\mathcal{A} \backslash \mathcal{B}) \sqcup(\mathcal{B} \backslash \mathcal{A})$

