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Abstract: The objective of this research is used frequency domain for factor screening while 
simulated annealing method searches for an optimum. Each iteration of simulated annealing, we 
consider as two problems, primal and shadow problem. Primal problem runs the conventional  
simulated annealing. On the other hand, a model using input variables that oscillate at different 
frequencies during a run which called “Shadow Problem”.  It is indicated by the frequency spectrum 
of the output variable where run lenght (denoted by) is large enough. For shadow problem, If the 
output variable is sensitive to changes in a particular input variable, then oscillating of this input 
variable induces oscillations in the output variable. The after factor screening, the only remaining 
important input variables will run continuously on the simulated annealing for solving the primal 
problem. However, the unimportant input variables are assigned to be constant values from the best 
values of the simulated annealing of the primal problem. We found that the frequency domain of 
simulated annealing requires quite fewer iterations than conventional simulated annealing. We 
describe the method, illustrate a nonlinear problem effectiveness at identifying important main effects, 
two-way interaction, and quadratic term of known model. 
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INTRODUCTION 

 
The Simulated Annealing (SA) is designed to 

enhance the likelihood of avoiding local minima en 
route to global minimum of problem. This technique 
uses magnitudes of random perturbations as reduced-
annealed in a controlled manner. Wherever the 
injected randomness helps prevent convergence to a 
local minimum by providing a greater “jumpiness” to 
the algorithm[1]. However, the interpretation of large 
amounts of input factors can become an intimidating 
task. 

Factor screening is useful when there are 
many input factors that affect potentially a simulation 
output or an output variable. However, we believes 
that relatively less factors and/or interactions  provide 
an adequate function of the system’s behavior. An 
experiment run the model several times. For example, 

k2 (or more) prospective configurations as called 
k2 factorial design, where k  is amount of input 

factors in problem function. 
For quantitative factors, response surface 

metamodel is applied and analyzed by regression 
techniques. The techniques just described all have a 
run-oriented approach. Run-oriented approaches 
work well for few input-factors problem. For 
example, a full factorial experiment involving 5 
factors requires 32 runs[2]. As we interest in 20 input-
factors, then a factorial experiment involving all these 
factors would requires 1,048,576 runs. For more 

precise experiment, k3 factorial is used, it requires 
over 3,486,784,401 runs. Unfortunately, response 
surface methodology requires a large number of 
simulation runs and is supported by very restrictive 
assumptions on system’s behavior[3]. It is not a good 
technique for factor screening before run the 
simulated annealing to optimize a large problem as 
we interest.  

An alternative simulation factor screening 
method, Schruben and Cogliano (1987) introduced 
Frequency Domain Methodology for screening many 
factors only few computer runs[4]. A frequency 
domain method for factor screening is a simulation 
model. It is a run with input factors that are varied 
during a run according to sinusoidal oscillations. 
Different frequencies during a run are assigned for 
each factor. Whenever the simulation response is 
sensitive to changes in a particular factor, then 
oscillating of this factor induces oscillations in the 
response. The frequency domain experiment permits 
one to identify an appropriate polynomial model for 
simulation output. The frequency domain simulation 
experiments typically will require 2-3 runs for factor 
screening. 

In this paper, we demonstrate how the 
methodology called Frequency Domain 
Experimentation (FDE) can screen input factors 
during the SA run. The proposed technique will 
reduce a solution space and number iterations of SA.  

 



METHODS 
 

Simulated Annealing Algorithm: 
 The SA algorithm is based on the analogy 
between the simulation of the annealing of solids and 
the problem of solving large combinatorial 
optimization problems. For this reason the algorithm 
became known as “Simulated Annealing”[5]. Its 
algorithm is shown as below 
Line 1:   Start  
Line 2:   Select an initial solution iX ; 
Line 3:   Select an initial temperature 0t 0> ; 
Line 4:   Select a temperature reduction functionα ; 
Line 5:   Repeat 
Line 6:    Repeat 
Line 7:      Randomly select 0X N(X )∈ ; 
Line 8:   0f (X) f (X )Δ = − ; 
Line 8:    If 0Δ < then 0X X= ; 
Line 9:   Else 
Line 10:    Generate random r uniformly in 

range (0, 1); 
Line 11:       If acceptr P< then 0X X= ; 
Line 12:       Endif 
Line 13:    Endif 
Line 14:  Until iteration_count = n_repeat; 
Line 15:  Set t (t)= α ; 
Line 16:  Until stopping condition = true 
Line 17:  End. 
Where 

X is set of input factors 
acceptP is probability to accept for energy 

change 
n_repeat is cooling schedule 

(t)α is temperature reduction function.  
 

Frequency Domain Experiment Algorithm:  
Frequency domain experiment assumes the 

expected output of a simulation model, which is 
modeled over an experimental region by a p-order 
polynomial given by 

 
0 1 1 2 2 q q(Y) ... ,Ε = β +β τ +β τ + +β τ  (1)  

 
Where 

(Y)Ε is the expected output  

jτ is a term in the p-order polynomial and is a 
particular product of the nonnegative integer powers 
of  the input factors jX , j (1,2,...,K)∈ where the sum 
of the exponents is not greater than p (e.g., if  p 5= , 

2 4
1 2X X is not a term)  

β is  the coefficient of the τ term 
q is the number of potential terms; and 
X is input factors 1 2 kX ,X ,...,X .  

The equation (1) describes a static relationship 
between the expected output and configuration of 
input factors. For frequency domain experiment, this 
relationship is obtained through static experiments. 
For each static experiment, the input factors are 
varied at specific values in the region of each input 
factors and (Y)Ε is estimated. This process is not 
repeated unnecessarily in the experiment. 

 
 
 
 
 
 
 
 

Fig. 1 Frequency Domain Experiment in the Black 
Box. 

 
Fig. 1, if we view the inputs and outputs of the 

simulation runs as time series (t) rather than constant 
values, we can then oscillate the input factors during 
the simulation run. For each input factor affects the 
system performance, then the output time series will 
oscillate at a related driving frequency. Alternatively, 
for each input factor does not affect performance, 
then the ‘black box’ will not transmit the oscillation 
at a related driving frequency through to the output 
time series[2]. 

For the frequency domain factor screening 
technique, the input factor level setting for each 
factor jX , j (1,2,...,K)∈ , (and k is the number of 
input factors), is varied according to: 

 
j j j jX (t) X (0) a cos(2 t).= + πω  (2) 

 
Here, 

t 0,1,..., N 1,= − where N is the total number 
of observations generated by the simulation runs, 
which is based on time series. 

jX (0) is j j0.5(U L )+ are the nominal value of 
factor jX in time 0 , jU is upper bound of factor jX  
and jL is lower bound of factor jX  

ja is j j0.5(U L )− are the amplitude of the 
factor jX  

jω is the unique driving frequency for 
factor jX  [6] . 

It is important to note that equation (2) 
describes an input factor that oscillates at different 
frequencies during a run. 

After run experiment, we analyze the 
output Y(t) by using spectral analysis.  
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Frequency Domain of Simulated Annealing: 
We have developed a new technique based on 

a conventional SA method which is applied a 
frequency domain experiment for reducing a solution 
space during the SA run for optimization.  This 
technique is a simulated annealing-based simulation 
optimization method developed to improve the 
performance of simulated annealing for continuous 
variable simulation optimization. 

We adapte a simulated annealing algorithm by 
adding a few commands to collect observations of 
Y(t) for transforming the time domain into frequency 
domain and then analyze its spectral frequency. The 
command are given by 

shadow
0 0 jX X a cos(2 t),= + πω  (3) 

Where  
0X is set of new input factor values from SA 

ja cos(2 t)πω is set of term of frequency 
domain experiment method 
And 
 shadow shadow

0Y (t) f (X ),=   (4) 
Where 
 shadow

0f (X ) is the output response of function 

assign to shadowY (t)  
 t is a iteration_count. 

Equation (3) and (4) is added to SA algorithm 
before line 14, respectively. For equation (4), it is 
called is “Shadow Problem”. Whenever we run 
lengths of simulation run (denoted by n) large enough 
to include at least 10 full cycles of the lowest term 
indicator frequency. The larger the value of n, the 
smaller the variance of the spectral estimators[4]. The 
run lengths of SA can be made typically large 
iterations, but experimental cost for run increase very 
little margin. For example, we run lengths 152  
observations of Y(t) . 

Last added command is a command to analyze 
spectral frequency of shadow problem. There is given 
by 
 If iteration_count = n_check then 
  shadowf ( ) fft(Y );ω =  
  Check Y′  
  If X are unimportant inputs then reduce 
set of X 

       Endif 
Endif 

Were 
 n_check is the maximum run lengths (n) 
 fft is the fast Fourier transform 
 f ( )ϖ is the spectral term of shadowY . 

 The previous command is added after the 
equation (4). Shadow problem is indicated by the 
frequency spectrum of shadowY (t) , if the output 

variable is sensitive to changes in a particular input 
variable, then oscillating of this input variable 
induces oscillations in the output variable. The only 
remaining important input variables will run 
continuously on the SA and unimportant input 
variables are assigned to be constant from the best 
values of the simulated annealing of the primal 
problem. Then we obtain a smaller set of input 
variables for solving the SA of the primal problem 
next. 

 
EXPERIMENT 

Suppose that we interest in twenty input 
factors. A black box system is given as follow  

2 2 2
1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20

Y(t) 4X 25X 50X 100X 75X
50X 25X X X X X
X X X X X X
X X X .

= − + + + +
− − + + + +
+ + + + + +
+ − −

 

 
The following steps summarize the frequency 

domain of SA procedure 
Step 1: Our performance measure is the simulation 
out put, Y . 
Step 2: Twenty input factors will be oscillated during 
the SA runs to assess their impact on Y . 
Step 3: The twenty input factors were oscillated at 
unique frequencies of 15310 2 , 15598 2 , 15763 2 , 

15825 2 , 15846 2 , 15949 2 , 151321 2 , 152063 2 , 
153054 2 , 153446 2 , 154024 2 , 155303 2 , 156005 2 , 
156789 2 , 157882 2 , 159223 2 , 1511039 2 , 1512546 2

, 1514547 2 and 1514588 2 cycles per time unit, 
respectively. Results of primary indicator frequencies 
are the driving frequencies for main effects. Indicator 
frequencies for quadratic effects are 

15620 2 , 151196 2 , 151526 2 , 151650 2 , 151692 2 , 
151898 2 , 152642 2 , 154126 2 , 156108 2 , 
156892 2 , 158048 2 , 1510606 2 , 1512010 2 , 

1513578 2 , 1515764 2 , 1514322 2 , 1510690 2 ,
157676 2 , 153674 2 and 153592 2 cycles per time 

unit, respectively[6]. 
Step 4: The run length is 152 . 
Step 5: We use MATLAB program to compute this 
experiment. 

Figure 2 illustrated the total spectrum of main 
effect and quadratic effect altogether in each input 
factors to analyze the whole picture of each factors. 
We found that input factor 3X  had the highest 
influence followed by 1 2 4 5 6 7X , X , X , X , X and X  
respectively. These factors had high influence 
towards the response variable Y(t) , when considered 
with indicated our problem which correlated. This 
meant that this factor screening method was work 
well.  



RESULTS AND DISCUSSION 
 

  
 

 
Fig 2. Spectral term of 20 factors with 15n 2=  

 
We could organize the order of the input 

factors which had influence towards the response 
variable Y(t)  according to the experiment as follows;  

3 1 2 4 5 6 7 8 10 19 11 9 12X , X , X , X , X ,X , X , X , X , X , X , X , X

20 18 13 17 14 15 16X , X , X , X , X , X , and X respectively. 
From table 1, we determined the reduction of 

input factors by creating policies. The identified 
policies were 10 policies altogether. The first policy 
did not require decreasing in the numbers of input 
factors. The second policy would like to decrease in 
the numbers of input factors used in the system by 
10%. The third policy to the tenth policy would like to 
decrease in the number of input factors used in the 
system by 20% to until 90%   respectively. Therefore, 
creating policies for input factors was convenient to 
solve a problem in operation management. The fewer 
input factors would also result in less confusion. 

From the result, SA took 8,743,314 iterations 
to find the solution when compared with frequency 
domain of SA with each policy; we found that the 

numbers of iterations spent were fewer. When we 
determined to find the answer from input factors 90% 
(the number of input factor 10% were not applied) we 
received 2 variables that would not be used which 
were 15X and 16X respectively (considered from input 
factors ordering). This policy applied the numbers of 
iterations in searching the answers 7,554,054 
iterations which were decreased about 1 million 
iterations from the previous one. When we 
determined to decrease the numbers of input factors 
continuously, it was found that the numbers of 
iterations were also decreased. At the 10th policy, the 
numbers of input factors were at 10% (the number of 
input factor 90% were not applied), the numbers of 
iterations spent were only 38,900 rounds. 

From the indicated statement problem, 
although the decrease in number of the variables, the 
effects to the answer when compare to global 
optimization there was only a few percentage 
different. From table 1, you will see that although we 
reduced the number of input factors down to 10%. 
The answer was different from global optimization 
only around 18%. However, the effects towards the 
answer would vary amongst each problem 
statements, a researcher should consider carefully the 
number of input factors to be decreased by 
considering spectrum graph of frequency domain 
according to figure 2. 

From figure 4, we test running on 4 computers 
with different CPU applying the same seed. We 
found that computers with many cores were faster 
than one core computers. However, no matter types 
of computer used for input factors of 20 variables 
would spend so much time. The best computer still 
took more than 1 hour for computing the answer of 
this statement problem, but if the numbers of input 
factors were reduced to 10%, it would take only less 
than 1 minute. 
 

CONCLUSION 
We have shown that heuristic and factor 

screening could be able to implement at the same 
time by not taking more time in processing process. 
Our aim was to encourage researchers and 
practitioners applied this technique in operation 
management or other related fields. For example, in 
an industrial plant, the numbers of relevant factors 
might be high so it might be difficult to find a 
suitable set up for the mechanic. The decrease in 
variables would be benefit and convenient. 

However, frequency domain experiment was 
not widely used as most of researchers and 
practitioners could not foresee a benefit of changing 
from time domain to frequency domain which 
normally would be complicated. We would like to 
show that frequency domain was not that complicated 
and at present there were a lot of equipment to help 
transform to frequency domain. In this research, we 
used MATLAB to transform with function Fast 

Zoom In factors 4 – 20 



Fourier Transform (fft) which the numbers of data 
152 took only 2 seconds. 

Our next research will be an experiment on 
factor screening by other methods such as Genetic 

Algorithm or Tabu Search considering discrete event 
input factors in the problem statement as well. 
 

 

Table 1 Optimization results: identification of policy 

Policy 
Minimum  

Objective value 

Difference from Global  
Optimum solution 

Number 
of 

Iterations % Diff.1 Value Diff.2 

Simulated Annealing -4,000,262,999,390.78 -0.0000000152 609.22 8,743,314.00 
Policy 1 (not reduced) -4,000,262,999,390.78 -0.0000000152 609.22 8,005,826.00 

Policy 2 (18 Vars.) -4,000,261,102,582.43 -0.0000474323 1,897,417.57 7,544,054.00 
Policy 3 (16 Vars.) -4,000,258,728,903.01 -0.0001067704 4,271,096.99 5,287,136.00 
Policy 4 (14 Vars.) -4,000,256,686,258.68 -0.0001578332 6,313,741.32 5,271,654.00 
Policy 5 (12 Vars.) -4,000,254,577,112.57 -0.0002105583 8,422,887.43 5,191,734.00 
Policy 6 (10 Vars.) -4,000,252,253,531.09 -0.0002686441 10,746,468.91 3,229,100.00 
Policy 7 (8 Vars.) -4,000,250,438,669.06 -0.0003140126 12,561,330.94 1,979,650.00 
Policy 8 (6 Vars.) -4,000,239,940,167.53 -0.0005764579 23,059,832.47 3,534,780.00 
Policy 9 (4 Vars.) -4,000,091,111,067.69 -0.0042969408 171,888,932.31 1,034,363.00 

Policy 10 (2 Vars.) -3,305,577,930,663.05 -17.3659849199 694,685,069,336.95 38,900.00 
Note: The Optimum Value is -4,000,263,000,000. 
          1 % Diff. is (Minimum Obj. Value – Optimum Value)/Optimum Value x 100% 
               2 Value Diff. is |Minimum Obj. Value – Optimum Value| 
 

 
Fig 3. Iteration results: identification of policy 
 

 
Fig 4. Time to run optimization by same seed: CPU 
benchmarks 
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